UNIT-3

 Bottom up Parsing: Reductions — Handle
Pruning - Shift Reduce Parsing — Conflicts
During Shift—Reduce Parsing.

* Introduction to simple LR Parsing:

 Why LR Parsers — Items and LR(0) Automaton -
The LR-Parsing Algorithm - Constructing SLR-
Parsing Tables

Bottom up Parsing

e A bottom-up parse corresponds to the
construction of a parse tree for an input string
beginning at the leaves (the bottom) and
working up towards the root(the top).

Example

« Given the grammar:

-E-ST
-~ T—>T*F
- T—>F
- F—id
RO TP PRTORN. 8 R 78 R E
id F RaAdosmogip(0 6 1
d id Foid 7+ F
id e d

id

Reductions

 bottom-up parsing as the process of "reducing"
a string w to the start symbol of the grammar.

e At each reduction step, a specific substring
matching the body of a production is replaced by
the non terminal at the head of that production.

 The key decisions during bottom-up parsing are
about when to reduce and about what
production to apply.

A reduction is the reverse of a step in a

derivation

The goal of bottom-up parsing is therefore to

construct a derivation in reverse
E=T =2T+xF= Txid= F*xid = idx*id.

This derivation
derivation.

IS

N

fact

d

rightmost

Handle Pruning

* Bottom-up parsing during a left-to-right scan
of the input constructs a right-most derivation
In reverse.

* Informally, a "handle" is a substring that
matches the body of a production, and whose
reduction represents one step along the
reverse of a rightmost derivation.

* The leftmost substring that matches the body
of some production need not be a handle.

RIGHT SENTENTIAL FORM HANDLE REDUCING PRODUCTION
id; * id» id, F—-id
F xid, F T - F
T * id-;_) id2 F-id
TxF 7 g E-T *x F

Figure 4.26: Handles during a parse of id; * id,

* A rightmost derivation in reverse can be
obtained by "handle pruning." That is, we start
with a string of terminals w to be parsed.

Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing in which
a stack holds grammar symbols and an input buffer holds
the rest of the string to be parsed.

As we shall see, the handle always appears at the top of the
stack just before it is identified as the handle.

We use S to mark the bottom of the stack and also the right
end of the input.

Conventionally, when discussing bottom-up parsing, we
show the top of the stack on the right, rather than on the
left as we did for top-down parsing.

Initially, the stack is empty, and the string w is on the input,
as follows:

STACK INPUT
$ w S

During a left-to-right scan of the input string, the parser shifts
zero or more input symbols onto the stack, until it is ready to
reduce a string /3 of grammar symbols on top of the stack.

It then reduces /3 to the head of the appropriate production.

The parser repeats this cycle until it has detected an error or
until the stack contains the start symbol and the input is
empty

STACK INPUT

$S 3

* Upon entering this configuration,

the parser halts and

announces successful completion of parsing.

* Steps through the actions a shift-reduce parser might take in
parsing the input string idxid according to the expression

grammar

STACK INPUT ACTION

$ id; *id, § shift

$id, ¥1d2 $ reduce by F — id
$F ¥1dy S reduce by T — F
ST ¥1d, § shift

$T id, § shift

$T *id, $ reduce by F — id
$T x F S reduceby T - T % F
$T $ reduceby E—T
SE S accept

Configurations of a shift-reduce parser on input id, *id,

While the primary operations are shift and reduce, there
are actually four possible actions a shift-reduce parser
can make: (1) shift, (2) reduce, (3) accept, and (4) error.

Shift. Shift the next input symbol onto the top of the
stack.

Reduce. The right end of the string to be reduced must
be at the top of the stack. Locate the left end of the
string within the stack and decide with what non
terminal to replace the string.

Accept. Announce successful completion of parsing.

Error. Discover a syntax error and call an error recovery
routine.

* Consider the grammar
S—>S+S
S—>S*S
S—>id
* Perform Shift Reduce parsing for input string
“id +id + id”

S id+id+id$ Shift

Sid +d+idS Reduce S->id
5 +id+idS Shift
95+ id+id$ Shift
SS+id +idS Reduce S->id
95+S +dS Reduce S->S+S

9S +d$ Shift

§S+ idS Shift
SS+id S Reduce S->id
95+S S Reduce S->S+S

5S S Accept

* Consider the grammar
S—> (L)] a
L—>L,S|S
Perform Shift Reduce parsing for input string
“(a,(a,a))"

S

S(a

$(S

S(L

S(L,

S(L;{

S(L,(a

S(L,(S

S(L, (L

Stack

Input Buffer

(a,(a,a))$

a,(a,a))$

,(a,a))$

,(a,a))$

,(a,a))s

(a,a))$

a,a))s$

,a))s

,a))$

,a))s

Parsing Action

Shift
Shift
ReduceS— a
ReducelL— S
Shift
Shift
Shift
ReduceS— a
ReducelL— S

Shift

S AL,

S(L,(L,a

LTS

S(L (L

S(L (L)

SlLS

S(L

S(L)

$S

a))$

))$

))S

))S

) S

) S

)$

Shift

ReduceS— a

ReduceL—L,S

Shift

Reduce S — (L)

ReduceL—L,S

Shift

Reduce S — (L)

Accept

* The use of a stack in shift-reduce parsing is justified by an
important fact: the handle will always eventually appear on top
of the stack, never inside.

* This fact can be shown by considering the possible forms of
two successive steps in any rightmost derivation.

S

NN

Q 3 9, Y

Case (1) Case (2)

Cases for two successive steps of a rightmost derivation

STACK
$a By

$asB

$aBBy

$ary

$aBzy

INPUT
yz$

yz$

z$

zyz$
z$

In both cases, after making a reduction the parser had to shift zero or more
symbols to get the next handle onto the stack. It never had to go into the stack

to find the handle.

Conflicts During Shift-Reduce Parsing

There are context-free grammars for which shift-reduce
parsing cannot be used.

Every shift-reduce parser for such a grammar can reach a
configuration in which the parser, knowing the entire stack
contents and the next input symbol, cannot decide whether
to shift or to reduce (a shift/reduce conflict), or cannot decide
which of several reductions to
make (a reduce/reduce conflict).

We now give some examples of syntactic constructs that give
rise to such grammars.

Technically, these grammars are not in the LR(K) class of
grammars defined we refer to them as non-LR grammars.

The k in LR(k) refers to the number of symbols of look ahead
on the input. Grammars used in compiling usually fall in the
LR(1) class, with one symbol of look ahead at most.

Conflicts During Shift-Reduce Parsing

There are context-free grammars for which shift-
reduce parsers cannot be used.

Stack contents and the next input symbol may not
decide action:

— shift/reduce conflict: Whether make a shift operation or a reduction.

— reduce/reduce conflict: The parser cannot decide which of several
reductions to make.

If a shift-reduce parser cannot be used for a grammar,
that grammar is called as non-LR(k) grammar.

left to, rlg{' rig%t k lookhead

scanning derivation

An ambiguous grammar can never be a LR grammar.

* Introduction to simple LR Parsing:

 Why LR Parsers — Items and LR(0) Automaton -
The LR-Parsing Algorithm - Constructing SLR-
Parsing Tables

Shift-Reduce Parsers

 There are two main categories of shift-reduce parsers

1. Operator-Precedence Parser

— simple, but only a small class of grammars. CEG

CLR
LALR

2. LR-Parsers
— covers wide range of grammars.

* SLR-simple LR parser
* Canonical LR — most general LR parser
* LALR —intermediate LR parser (lookhead LR parser)
— SLR, CLR and LALR work same, only their parsing tables are different.

LR Parsers

* The most powerful shift-reduce parsing (yet efficient) is:

LR(k) parsing.
left t@ \:Mgl_}‘qqokhead
scanning derivation (k is omitted =» itis 1)

« LR parsing is attractive because:

LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
The class of grammars that can be parsed using LR methods is a proper superset of the class
of grammars that can be parsed with predictive parsers.

LL(1)-Grammars < LR(1)-Grammars
An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right
scan of the input.
Can recognize virtually all programming language constructs for which CFG can be written

LR Parsers

LR-Parsers

covers wide range of grammars.

SLR — simple LR parser

LR — most general LR parser

LALR — intermediate LR parser (look-ahead LR parser)

SLR, LR and LALR work same (they used the same algorithm), only their parsing
tables are different.

LR Parsing Algorithm

input A | omes |8 | we [E | B

\ LR Parsing Algorithm

~output

AN

w 0o ™ D W

Action Table Goto Table
terminals and $ non-terminal
S
four different t each item 1s
actions a a state number
t
e
S

Actions of A LR-Parser

shift s -- shifts the next input symbol and the state s onto the stack
(So XI SI Xm Sm’ ai ai+l an $) 9 (Sn Xl Sl Xm Sm ai S, ai+l an $)

reduce A—>f (or rn where n is a production number)

— pop 2IBI (=r) items from the stack;
Al

(S Xy Spaee XS 88160 88) B (8, X, 80 X S - A® & i d$)

m ~m? < i+l - m-r =~ m-r

— then push A and s where s=goto[s

m-r?

— Output the reducing production reduce A—f3

Accept — If action[S a,]= accept ,Parsing successfully completed

m,

Error -- Parser detected an error (an empty entry in the action table) and calls an
error recovery routine.

Constructing SLR Parsing Tables — LR(0) Item

LR parser using SLR parsing table is called an SLR parser.
A grammar for which an SLR parser can be constructed 1s an SLR grammar.

An LR(0) item (item) of a grammar G is a production of G with a dot at the some
position of the right side.

Ex: A — aBb Possible LR(0) Items: A — .aBb
(four different possibility) A — a.Bb

A —>aB.b

A — aBb.

Sets of LR(0) items will be the states of action and goto table of the SLR parser.
A production rule of the form A = ¢ yields only one item A = .

Intuitively, an item shows how much of a production we have seen till the current
point in the parsing procedure.

Constructing SLR Parsing Tables — LR(0) Item

A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for
constructing SLR parsers.

To construct the of canonical LR(0) collection for a grammar we define an augmented
grammar and two functions- closure and goto.

Augmented Grammar:

G’ 1s grammar G with a new production rule S’—S where S’ is the new starting
symbol.i.e G U {S’ > S} where S is the start state of G.

The start state of G =S’
This is done to signal to the parser when the parsing should stop to announce
acceptance of input.

Constructing SLR Parsing Tables — LR(0) Item

* Complete and Incomplete Items:
An LR(0) item is complete if *.” Is the last symbol in RHS else it is incomplete.

For every rule A —a, o# g, there is only one complete item A —a., but as many
incomplete items as there are grammar symbols.

Kernel and Non-Kernel items:
Kernel items include the set of items that do not have the dot at leftmost end.
S’-> .S is an exception and is considered to be a kernel item.
Non-kernel items are the items which have the dot at leftmost end.
Sets of items are formed by taking the closure of a set of kernel items.

The Closure Operation

If I isa setof LR(0) items for a grammar G, then closure(I) is the set of LR(0)
items constructed from I by the two rules:
1. Initially, every LR(0) item in I is added to closure(I).

2. If A = oeBp isin closure(I) and B—Y is a production rule of G; then
B— ey will be in the closure(]).

We will apply this rule until no more new LR(0) items can be added to closure(I).

The Closure Operation -- Example

E’—>E
E - E+T
E->T
T > T*F
T—>F
F— (E)
F—id

closure({E’ = «E}) =

{ B>

E—
E—
T—
T
F—
F—o>

oE

o E+T
oT

i ke o
oF
«(E)
oid }

kernel items

Goto Operation

« IfIisasetof LR(0)items and X is a grammar symbol (terminal or non-
terminal), then goto(I,X) is defined as follows:

— If A — a.Xp inIthen every item in closure({A — aX.B}) will be in
goto(1,X).

— If I 1s the set of items that are valid for some viable prefix v, then goto(I,X)
is the set of items that are valid for the viable prefix yX.
Example:

[I={E’—>E., E—>E4+T}
goto(I,+4)={ E - E+.T
T —».T*F
T—>.F
F —.(E)
F—.id }

{ E’—>.E,
E — .E+T,
E—>.T,
T — .T*F,
T > .F,
F— .(E),
F— .ad }

Example

goto (LE)={ E’ > E.,E - E+T }

goto(, H)={E—>T.,T—>T.*F}
goto (I, F)={T > F. }

goto(I,id) = { F —> id. }

goto(I,()={ F— (E), E > .E+T,
E—>.T, T—>.T*F, T —>.F,
F— (E), F— .ud }

STEP 1
Construction of The Canonical LR(0) Collection

* To create the SLR parsing tables for a grammar G, we will create the
canonical LR(0) collection of the grammar G’.

« Algorithm:
Procedure items(G’)
begin

C = { closure({S’—>.S}) }

repeat for each set of items I in C and each grammar symbol X

if goto(1,X) is not empty and not in C
add goto(1,X) to C

until no more set of LR(0) items can be added to C.

end

» goto function is a DFA on the sets in C.

[,: E* = .E.
E— E+T
E—->.T
T — .T*F
T—.F
F— .(E)
F— .ad

[,: goto(l, E)
E’— E.
E—>E+T

[,: goto(l, T)
E—oT.
T - T.*F
[;: goto(I, F)
T—F.

I, : goto(I, ()

F— (.E)
E - .E+T
E—>.T
T— .T*F
T—>.F

F — .(E)
F— .id

I5: goto(l, 1d)
F — id.

[¢: goto(I, +)
E—=E+1
T— T*F
T—.F
F— (E)

F—.id

The Canonical LR(0) Collection -- Example

I,: goto(l, *)
T —>T*F
F— .(E)
F—.id

I¢: goto(I, E)
F— (E.)
E—>E+T
Iy:goto(I; T)
E — E+T.

T - T*F

[,o: goto(l; F)
T —» T*F.
I,,:goto(lg))
E—(E).

Transition Diagram (DFA) of Goto Function

-+ o = e N
'I() '19 3 tO 17

Constructing SLR Parsing Table

(of an augumented grammar G’)

Construct the canonical collection of sets of LR(0) items for G’. Cé&—{I,...,1 }

State 1 is constructed from I, The parsing actions for state I are determined as follows:

« If aisaterminal, A—>a.aP in I and goto(l;,a)=I; then action[i,a] is shiftj.

« If A>a. isinl, then action[i,a] is reduce A—a for all ain FOLLOW(A) where
A#S’.

e If S>>, isin [, then action[i,$] is accept.

* If any conflicting actions generated by these rules, the grammar is not SLR(1).

Create the parsing goto table
* for all non-terminals A, if goto(Ii,A)=Ij then goto[i,Al=j

All entries not defined by (2) and (3) are errors.

Initial state of the parser is the one construcetd from the sets of items containing
[S’—>.S]

Y
2)
3)
4)
5)
6)

SLR Parsing Tables for Expression Grammar

E - E+T
E->T
T —> T*F
T—>F
F — (E)
F—id

Action Table Goto Table

state | id | + | * () $ E | T|F

0 $5 s4 1 2 13

1 s6 acc

2 2 | s7 2 | 12

3 4 | 4 4 | r4

4 s5 s4 8 2 |3

5 6 | 6 6 | r6

6 $5 s4 9 13

7 $S s4 10

8 s6 sl

9 rl | s7 rl | rl

10 3 | r3 3 | r3

11 S| S > | 1

LR Parsing Algorithm

set ip to point to the first symbol in ©$
initialize stack to SO
repeat forever
let ‘s’ be topmost state on stack & ‘a’ be symbol pointed to by 1p
if action[s,a] = shift s’
— push a then s’ onto stack
— advance ip to next input symbol
else if action[s,a] = reduce A — f
— pop 2*| B | symbols of stack
— let s’ be state now on top of stack
— push A then goto[s’,A] onto stack
— output production A — 3
else 1f action[s,a] == accept
— return success
else
— error()

stack

0

O1d5

OF3

0T2
0T2*7
0T2*71d5
0T2*7F10
0T2

OEl
OE1+6
OE1+61d5
OE1+6F3
OE1+6T9
OEl

input
id*id+id$
*1d+1d$
*1d+1d$
*1d+1d$
id+1d$
+id$
+id$
+id$
+id$
id$

&5 5 & o5

action

shift 5

reduce by F—id
reduce by T>F
shift 7

shift 5

reduce by F—id
reduce by T->T*F
reduce by E-T
shift 6

shift 5

reduce by F—id
reduce by T-F
reduce by E-E+T
accept

Actions of SLR-Parser -- Example

output

F—id
T—-F

F—id
T->T*F
E-T

F—1d
T—>F
E—E+T

